Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087168

RESUMO

Dementia is the most common age-related problem due predominantly to Alzheimer's disease (AD) and vascular dementia (VaD). It has been shown that these contributors are associated with a high amount of oxidative stress that leads to changes in neurological function and cognitive impairment. The aim of study was to explore the mechanism by which hexahydrocurcumin (HHC) attenuates oxidative stress, amyloidogenesis, phosphorylated Tau (pTau) expression, neuron synaptic function, and cognitive impairment and also the potential mechanisms involved in induced permanent occlusion of bilateral common carotid arteries occlusion (BCCAO) or 2-vessel occlusion (2VO) in rats. After surgery, rats were treated with HHC (40 mg/kg) or piracetam (600 mg/kg) by oral gavage daily for 4 weeks. The results showed that HHC or piracetam attenuated oxidative stress by promoting nuclear factor erythroid 2-related factor 2 (Nrf2) activity, and alleviated expression of synaptic proteins (pre- and post-synaptic proteins) mediated by the Wingless/Integrated (Wnt)/ß-catenin signaling pathway. Moreover, HHC or piracetam also improved synaptic plasticity via the brain-derived neurotrophic factor (BDNF)/Tyrosine receptor kinase B (TrkB)/cAMP responsive element binding protein (CREB) signaling pathway. In addition, HHC reduced amyloid beta (Aß) production and pTau expression and improved memory impairment as evidenced by the Morris water maze. In conclusion, HHC exerted remarkable improvement in cognitive function in the 2VO rats possibly via the attenuation of oxidative stress, improvement in synaptic function, attenuation of amyloidogenesis, pTau, and neuronal injury, thereby improving cognitive performance.

2.
EXCLI J ; 22: 466-481, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534221

RESUMO

The proliferation and migration of vascular smooth muscle cells (VSMCs) play vital roles in the pathogenesis of atherosclerosis and hypertension. It has been proposed and verified that hexahydrocurcumin (HHC), a metabolite form of curcumin, has cardiovascular protective effects. This study examined the effect of HHC on angiotensin II (Ang II)-induced proliferation, migration, and inflammation in rat aortic VSMCs and explored the molecular mechanisms related to the processes. The results showed that HHC significantly suppressed Ang II-induced proliferation, migration, and inflammation in VSMCs. HHC inhibited Ang II-induction of the increase in cyclin D1 and decrease in p21 expression in VSMCs. Moreover, HHC attenuated the generation of reactive oxygen species (ROS), and the expression of nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and matrix metalloproteinases-9 (MMP9) in Ang II-induced VSMCs. The proliferation, migration, inflammation, and ROS production were also inhibited by GKT137831 (NADPH oxidase, NOX1/4 inhibitor) and the combination of HHC and GKT137831. In addition, HHC restored the Ang-II inhibited expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) and peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α). These findings indicate that HHC may play a protective role in Ang II-promoted proliferation, migration, and inflammation by suppressing NADPH oxidase mediated ROS generation and elevating PPAR-γ and PGC-1α expression. See also Figure 1(Fig. 1).

3.
Inflammopharmacology ; 31(3): 1481-1493, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37017851

RESUMO

Chronic cerebral hypoxia (CCH) is caused by a reduction in cerebral blood flow, and cognitive impairment has been the predominant feature that occurs after CCH. Recent reports have revealed that melatonin is proficient in neurodegenerative diseases. However, the molecular mechanism by which melatonin affects CCH remains uncertain. In this study, we aimed to explore the role and underlying mechanism of melatonin in inflammation and blood‒brain barrier conditions in rats with CCH. Male Wistar rats were subjected to permanent bilateral common carotid artery occlusion (BCCAO) to establish the VAD model. Rats were randomly divided into four groups: Sham, BCCAO, BCCAO treated with melatonin (10 mg/kg), and BCCAO treated with resveratrol (20 mg/kg). All drugs were administered once daily for 4 weeks. Our results showed that melatonin attenuated cognitive impairment, as demonstrated by the Morris water maze tests. Furthermore, melatonin reduced the activation of inflammation by attenuating the phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor alpha (pIκBα), causing the suppression of proteins related to inflammation and inflammasome formation. Moreover, immunohistochemistry revealed that melatonin reduced glial cell activation and proliferation, which were accompanied by Western blotting results. Additionally, melatonin also promoted the expression of sirtuin-1 (SIRT1), peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α), and peroxisome proliferator-activated receptor-gamma (PPARγ), causing attenuated blood‒brain barrier (BBB) disruption by increasing tight junction proteins. Taken together, our results prove that melatonin treatment modulated inflammation and BBB disruption and improved cognitive function in VaD rats, partly by activating the SIRT1/PGC-1α/PPARγ signaling pathway.


Assuntos
Demência Vascular , Melatonina , Ratos , Masculino , Animais , Barreira Hematoencefálica/metabolismo , Demência Vascular/tratamento farmacológico , Melatonina/farmacologia , Ratos Wistar , Sirtuína 1/metabolismo , PPAR gama/metabolismo , Transdução de Sinais , Inflamação/tratamento farmacológico
4.
Int Immunopharmacol ; 119: 110181, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37119679

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that causes cognitive and memory decline. Neuroinflammation is currently considered as being an important pathology in AD. NLRP3, the nucleotide-binding and oligomerization (NOD) domain-like receptor (NLR) family pyrin domain (PYD)-containing 3 (NLRP3) inflammasome is a critical component of the innate immune response, which plays a key role in the development and progression of AD. Therefore, the NLRP3 inflammasome is one of the target treatments for AD. This study aimed to investigate the effect of festidinol, a flavanol isolated from Dracaena conferta, against NLRP3 inflammasome and blood-brain barrier damage in D-galactose and aluminum chloride-induced mice. The induced mice received D-galactose (150 mg/kg) and aluminum chloride (10 mg/kg) intraperitoneally for 90 days to generate cognitive impairment. Festidinol (30 mg/kg) and donepezil (5 mg/kg) were given by oral gavage for 90 days along with the induction. Then, learning and memory behavior, and molecular and morphological changes in the brain, which related to NLRP3 inflammasome, pyroptosis and the blood-brain barrier were measured. The results indicated that festidinol markedly decreased the escape latency and increased the time in the target quadrant in the Morris water maze test. Furthermore, festidinol significantly decreased the ionized calcium-binding adapter molecule 1 (Iba-1) and glial fibrillary acidic protein (GFAP) expression. Festidinol also markedly decreased the NLRP3 inflammasome pathway, interleukin 1 beta (IL-1ß), gasdermin-D, N-terminal (GSDMD-N) and caspase-3. Pertinent to the blood-brain barrier, festidinol only decreased tumor necrosis factor-α and matrix metallopeptidase-9, but did not restore the tight junction components. In conclusion, festidinol can restore learning and memory and provide a protective effect against the NLRP3 inflammasome and pyroptosis.


Assuntos
Doença de Alzheimer , Flavonoides , Inflamassomos , Piroptose , Animais , Camundongos , Cloreto de Alumínio/toxicidade , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Galactose , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Flavonoides/farmacologia
5.
J Biochem Mol Toxicol ; 37(3): e23279, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36541345

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is relatively associated with comorbidities in obesity and metabolic inflammation. Low-grade inflammation following the high-fat diet (HFD)-induced NAFLD can promote the development of nonalcoholic steatohepatitis (NASH) through particularly liver-resident immune cell recruitment and hepatic nuclear factor kappa B (NF-κB) pathway. Therefore, inflammatory intervention may contribute to NASH reduction. Pelargonic acid vanillylamide (PAVA) or nonivamide is one of the pungent capsaicinoids of Capsicum species and has been found in chili peppers. Our previous study demonstrated that PAVA improved hepatic function, decreased oxidative stress and reduced apoptotic cell death but the insight role of PAVA on NAFLD is still unclear. Thus, this study aimed to investigate the underlying anti-inflammatory mechanism of PAVA in an NAFLD-rat model. Male Sprague Dawley rats were fed with normal diet or HFD for 16 weeks. Then high-fat rats were given vehicle or PAVA (1 mg/kg/day) for another 4 weeks. We found that PAVA alleviated hepatic inflammation associated with the reducing toll-like receptor 4/NF-κB pathway, showing significantly lower recruitment of cluster of differentiation 44. PAVA also maintained activity of insulin signaling pathway, and attenuated NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome formation. NAFLD progresses to NASH through transforming growth factor (TGF-ß1), and also recovery to simple stage followed by PAVA suppresses pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1ß, interleukin-6, and Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway. Therefore, our findings suggest that PAVA provides a novel therapeutic approach for NAFLD and slows the progression to NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Ratos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Fígado/metabolismo , Inflamação/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
6.
Biomacromolecules ; 23(11): 4532-4546, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36169096

RESUMO

The efficiency of nerve guide conduits (NGCs) in repairing peripheral nerve injury is not high enough yet to be a substitute for autografts and is still insufficient for clinical use. To improve this efficiency, 3D electrospun scaffolds (3D/E) of poly(l-lactide-co-ε-caprolactone) (PLCL) and poly(l-lactide-co-glycolide) (PLGA) were designed and fabricated by the combination of 3D printing and electrospinning techniques, resulting in an ideal porous architecture for NGCs. Polypyrrole (PPy) was deposited on PLCL and PLGA scaffolds to enhance biocompatibility for nerve recovery. The designed pore architecture of these "PLCL-3D/E" and "PLGA-3D/E" scaffolds exhibited a combination of nano- and microscale structures. The mean pore size of PLCL-3D/E and PLGA-3D/E scaffolds were 289 ± 79 and 287 ± 95 nm, respectively, which meets the required pore size for NGCs. Furthermore, the addition of PPy on the surfaces of both PLCL-3D/E (PLCL-3D/E/PPy) and PLGA-3D/E (PLGA-3D/E/PPy) led to an increase in their hydrophilicity, conductivity, and noncytotoxicity compared to noncoated PPy scaffolds. Both PLCL-3D/E/PPy and PLGA-3D/E/PPy showed conductivity maintained at 12.40 ± 0.12 and 10.50 ± 0.08 Scm-1 for up to 15 and 9 weeks, respectively, which are adequate for the electroconduction of neuron cells. Notably, the PLGA-3D/E/PPy scaffold showed superior cytocompatibility when compared with PLCL-3D/E/PPy, as evident via the viability assay, proliferation, and attachment of L929 and SC cells. Furthermore, analysis of cell health through membrane leakage and apoptotic indices showed that the 3D/E/PPy scaffolds displayed significant decreases in membrane leakage and reductions in necrotic tissue. Our finding suggests that these 3D/E/PPy scaffolds have a favorable design architecture and biocompatibility with potential for use in peripheral nerve regeneration applications.


Assuntos
Polímeros , Pirróis , Engenharia Tecidual/métodos , Poliésteres , Impressão Tridimensional , Alicerces Teciduais
7.
Neurotox Res ; 40(5): 1348-1359, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36018507

RESUMO

Permanent cerebral ischemia is a consequence of prolonged cerebral artery occlusion that results in severe brain damage. Neurotoxicity occurring after ischemia can induce brain tissue damage by destroying cell organelles and their function. Neferine is a natural compound isolated from the seed embryos of the lotus plant and has broad pharmacological effects, including blockading of the calcium channels, anti-oxidative stress, and anti-apoptosis. This study investigated the ability of neferine to reduce brain injury after permanent cerebral occlusion. Permanent cerebral ischemia in rats was induced by instigation of occlusion of the middle cerebral artery for 24 h. The rats were divided into 6 groups: sham, permanent middle cerebral artery occlusion (pMCAO), pMCAO with neferine and nimodipine treatment. To investigate the severity of the injury, the neurological deficit score and morphological alterations were investigated. After 24 h, the rats were evaluated to assess neurological deficit, infarct volume, morphological change, and the number of apoptotic cell deaths. In addition, the brain tissues were examined by western blot analysis to calculate the expression of proteins related to oxidative stress and apoptosis. The data showed that the neurological deficit scores and the infarct volume were significantly reduced in the neferine-treated rats compared to the vehicle group. Treatment with neferine significantly reduced oxidative stress with a measurable decrease in 4-hydroxynonenal (4-HNE), nitric oxide (NO), neuronal nitric oxide (nNOS), and calcium levels and an upregulation of Hsp70 expression. Neferine treatment also significantly decreased apoptosis, with a decrease in Bax and cleaved caspase-3 and an increase in Bcl-2. This study suggested that neferine had a neuroprotective effect on permanent cerebral ischemia in rats by diminishing oxidative stress and apoptosis.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Animais , Benzilisoquinolinas , Isquemia Encefálica/metabolismo , Cálcio/metabolismo , Canais de Cálcio , Caspase 3/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Nimodipina/uso terapêutico , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína X Associada a bcl-2/metabolismo
8.
J Physiol Biochem ; 78(4): 833-844, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35749032

RESUMO

Obesity is categorized as a common comorbidity found in people who experience an ischemic stroke. However, the mechanisms to explain this correlation have still not been elucidated fully. Pyroptosis and necroptosis are novel forms of programmed cell death that occur upon intracellular danger signals. The major feature of pyroptosis and necroptosis is damage to the lipid membrane, which consequently results in lytic cell death and allows the release of high mobility group box protein 1 (HMGB1) into the extracellular space. We aimed to investigate the influences of high-fat diet (HFD) consumption on cerebral ischemia and reperfusion (I/R) injury and hypothesized that HFD consumption exacerbated the activation of pyroptosis, necroptosis, and HMGB1 signaling pathways. All rats received normal diet (ND) or HFD for 16 weeks. Subsequently, both groups were divided into either a sham- or an I/R-operated group. Twenty-four hours after the surgery, all rats were evaluated for neurological deficits and then sacrificed. After I/R injury, there were more severe functional deficits and larger brain infarcts in the HFD compared with the ND group. The histological observation revealed an increase in tissue abnormalities in the HFD group, consistent with the massive reduction of intact neurons along the peri-infarct region. Furthermore, cerebral I/R injury dramatically activated the pyroptotic, necroptotic, and HMGB1 signaling pathways in HFD-fed rats compared with ND-fed rats. These findings suggest that chronic HFD consumption worsens ischemic brain pathology and leads to poor post-stroke outcomes by exacerbating pyroptotic and necroptotic cell death.


Assuntos
Isquemia Encefálica , Proteína HMGB1 , Traumatismo por Reperfusão , Animais , Ratos , Dieta Hiperlipídica/efeitos adversos , Proteína HMGB1/metabolismo , Piroptose , Necroptose , Traumatismo por Reperfusão/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/patologia
9.
Phytomedicine ; 98: 153925, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35104759

RESUMO

BACKGROUND: Festidinol is a flavan-3-ol which has been shown to reduce advanced glycation end products (AGEs) and reactive oxygen species, both of which play a crucial role in the pathology of many neurodegenerative diseases. PURPOSE: This study aimed to investigate the effects of festidinol on oxidative stress, amyloidogenesis, phosphorylated tau (pTau) expression, synaptic function, and cognitive impairment, and the potential mechanisms involved, in a mouse model with an Alzheimer-like pathology. METHODS: D-galactose (150 mg/kg) and aluminum chloride (10 mg/kg) were injected intraperitoneally into 40 mice for 90 days to generate an AD mouse model with cognitive impairment. Festidinol (30 mg/kg) and donepezil (5 mg/kg) were then administered orally for 90 days after which behavior and molecular changes in the brain were measured. RESULTS: The aluminum accumulated and the expression of the cell senescence marker P16 increased after exposure to D-galactose and AlCl3 (2.5 ± 0.5 mg/kg, 149.1 ± 28.1% of control, respectively). Festidinol markedly decreased the escape latency (8.7 ± 4.3 s) and increased the number of platform crossings (8 ± 1.4 time) in the Morris water maze test. Superoxide dismutase activity was significantly elevated after festidinol administration, however there were significant reductions in the levels of 4­hydroxy-2-nonenal, receptor for advanced glycation end products, phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells (pNF-κB), and nuclear factor of activated T cells 1 (NFAT1). Festidinol attenuated amyloid beta production by reducing the mRNA of beta-site APP cleaving enzyme 1 (BACE1). Festidinol also significantly decreased the expression of pTau and phosphorylated glycogen synthase kinase 3 (148.6 ± 37.6% of control, 125.3 ± 22.6% of control, respectively). CONCLUSION: Festidinol can ameliorate learning and memory impairments by modulating amyloidogenesis, tau hyperphosphorylation, cholinergic activity, neuroinflammation, and oxidative stress, and by regulating the brain-derived neurotrophic factor signaling pathway.

10.
Biochem Pharmacol ; 198: 114980, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35219702

RESUMO

Chronic cerebral hypoperfusion (CCH) is the most common cause of cognitive impairment, which is commonly found in Alzheimer's disease (AD) and vascular dementia (VaD). Recently, studies have demonstrated that melatonin is an effective treatment in various neurodegenerative diseases. In this study, we aimed to investigate the effects of melatonin on CCH-induced AD pathology, endoplasmic reticulum (ER) stress, and synaptic plasticity, all of which are correlated with the activation of oxidative stress, apoptosis, and cognitive impairment. CCH was induced in male Wistar rats by bilateral common carotid artery occlusion (2VO). After surgery, rats were treated with melatonin (10 mg/kg) or piracetam (600 mg/kg) by oral gavage once a day for 4 weeks. At the end of the experiment, all rats were assessed for memory impairment by using the Morris water maze test. Subsequently, rats were sacrificed, and brains were removed to determine the levels of beta-amyloid (Aß), malondialdehyde (MDA); the acetylcholinesterase (AChE) activity; subjected to terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL); and subjected to western blotting of proteins related to memory, AD pathology, oxidative stress, ER stress, and apoptosis. Melatonin alleviated brain injury during 2VO induction, as revealed by decreased the expression of AD markers, attenuated oxidative stress, suppressed the expression of proteins related to ER stress, apoptosis, and stimulated the expression of the synaptic markers resulting in promoted cognitive function. Therefore, our data demonstrated that melatonin ameliorated cognitive impairment in the 2VO model, and these beneficial effects were associated with reduction in oxidative stress, ER stress, and apoptosis.


Assuntos
Isquemia Encefálica , Melatonina , Acetilcolinesterase , Animais , Isquemia Encefálica/metabolismo , Cognição , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Masculino , Aprendizagem em Labirinto/fisiologia , Melatonina/farmacologia , Melatonina/uso terapêutico , Plasticidade Neuronal , Ratos , Ratos Wistar
11.
Chem Biol Interact ; 351: 109703, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34673010

RESUMO

BACKGROUND: Agomelatine, a novel antidepressant, is a melatonin MT receptor agonist and serotonin 5HT2C receptor antagonist. In this study, agomelatine was used to investigate the molecular mechanisms of hippocampal aging associated with endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and apoptosis, all of which led to short-term memory impairment. METHOD: Hippocampal aging was induced in male Wistar rats by d-galactose (D-gal) intraperitoneal injection (100 mg/kg) for 14 weeks. During the last 4 weeks of D-gal treatment, rats were treated with agomelatine (40 mg/kg) or melatonin (10 mg/kg). At the end of the experiment, all rats were assessed for short-term memory by using the Morris water maze test. Subsequently, rats were sacrified and the hippocampus was removed from each rat for determination of reactive oxygen species (ROS), malondialdehyde (MDA), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays; and immunohistochemistry related to ER stress, mitochondrial dysfunction, and apoptosis. RESULTS: Agomelatine suppressed the expression of the aging-related proteins P16 and receptor for advanced glycation endproducts (RAGE), the expression of NADPH oxidase (NOX) 2 and 4, and ROS production. This treatment also shifted the morphology of astrocytes and microglia toward homeostasis. Furthermore, agomelatine decreased inositol-requiring enzyme 1 (pIRE1), protein kinase R-like endoplasmic reticulum kinase (pPERK), and chaperone binding immunoglobulin protein (BiP), leading to suppression of ER stress markers C/EBP homologous protein (CHOP) and caspase-12. Agomelatine reduced Ca2+ from the ER and stabilized the mitochondrial membrane stability, which was denoted by the BCL2 Associated X (Bax)/B-cell lymphoma 2 (Bcl2) balance. Agomelatine decreased cleaved caspase-3 production and the Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL)-positive area, and glutamate excitotoxicity was prevented via suppression of N-methyl-d-aspartate (NMDA) receptor subunit expression. Agomelatine exhibited effects that were similar to melatonin. CONCLUSION: Agomelatine improved neurodegeneration in a rat model of hippocampal aging by attenuating ROS production, ER stress, mitochondrial dysfunction, excitotoxicity, and apoptosis.


Assuntos
Acetamidas/uso terapêutico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Envelhecimento/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Galactose , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Memória de Curto Prazo/efeitos dos fármacos , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/metabolismo , Neurônios/efeitos dos fármacos , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor MT1 de Melatonina/agonistas
12.
Biochim Biophys Acta Mol Basis Dis ; 1868(3): 166317, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883248

RESUMO

Hexahydrocurcumin (HHC), a major metabolite of curcumin, possesses several biological activities such as antioxidant, anti-inflammation, and cardioprotective properties. This study aimed to investigate the effect of HHC on high blood pressure, vascular dysfunction, and remodeling induced by N-nitro L-arginine methyl ester (L-NAME) in rats. Male Wistar rats (200-250 g) received L-NAME (40 mg/kg) via drinking water for seven weeks. HHC at doses of 20, 40 or 80 mg/kg or enalapril 10 mg/kg was orally administered for the last three weeks. Blood pressure was measured weekly. Rats induced with L-NAME showed the development of hypertension, vascular dysfunction, and remodeling as demonstrated by an increase in wall thickness, cross-sectional area, and collagen deposition in the aorta. The overexpression of nuclear factor kappa B (NF-кB), vascular cell adhesion molecule 1 (VCAM1), intercellular adhesion molecule 1 (ICAM1), tumor necrosis factor-alpha (TNF-α), phosphorylated-extracellular-regulated kinase 1/2 (p-ERK1/2), phosphorylated-c-Jun N-terminal kinases (p-JNK), phosphorylated-mitogen activated protein kinase p38 (p-p38), transforming growth factor-beta 1 (TGF-ß1), matrix metalloproteinase-9 (MMP-9) and collagen type 1 was observed in L-NAME-induced hypertensive rats. Increased oxidative stress markers, decreased plasma nitric oxide (NO) levels and the down-regulation of endothelial nitric oxide synthase (eNOS) expression in aortic tissues were also found in L-NAME-induced rats. Moreover, L-NAME-induced rats showed enhanced synthetic protein expression in aortic tissues. These alterations were suppressed in hypertensive rats treated with HHC or enalapril. The present study shows that HHC exhibited antihypertensive effects by improving vascular function and ameliorated the development of vascular remodeling. The responsible mechanism may involve antioxidant and anti-inflammation potential.


Assuntos
Curcumina/análogos & derivados , Hipertensão/tratamento farmacológico , NG-Nitroarginina Metil Éster/toxicidade , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacos , Animais , Pressão Sanguínea , Curcumina/farmacologia , Inibidores Enzimáticos/toxicidade , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/patologia , Masculino , Ratos , Ratos Wistar
13.
J Cell Physiol ; 237(3): 1818-1832, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34825376

RESUMO

Even though astrocytes have been widely reported to support several brain functions, studies have emerged that they exert deleterious effects on the brain after ischemia and reperfusion (I/R) injury. The present study investigated the neuroprotective effects of melatonin on the processes of reactive astrogliosis and glial scar formation, as well as axonal regeneration after transient middle cerebral artery occlusion. Male Wistar rats were randomly divided into four groups: sham-operated, I/R, I/R treated with melatonin, and I/R treated with edaravone. All drugs were administered via intraperitoneal injection at the onset of reperfusion and were continued until the rats were sacrificed on Day 7 or 14 after the surgery. Melatonin presented long-term benefits on cerebral damage after I/R injury, as demonstrated by a decreased infarct volume, histopathological changes, and reduced neuronal cell death. We also found that melatonin attenuated reactive astrogliosis and glial scar formation and, consequently, enhanced axonal regeneration and promoted neurobehavioral recovery. Furthermore, glycogen synthase kinase-3 beta (GSK-3ß) and receptor-interacting serine/threonine-protein 1 kinase (RIP1K), which had previously been revealed as proteins involved in astrocyte responses, were significantly reduced after melatonin administration. Taken together, melatonin effectively counteracted the deleterious effects due to astrocyte responses and improved axonal regeneration to promote functional recovery during the chronic phase of cerebral I/R injury by inhibiting GSK-3ß and RIP1K activities.


Assuntos
Isquemia Encefálica , Melatonina , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , Isquemia Encefálica/metabolismo , Gliose/tratamento farmacológico , Gliose/patologia , Glicogênio Sintase Quinase 3 beta , Inflamação , Masculino , Melatonina/farmacologia , Melatonina/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Wistar , Traumatismo por Reperfusão/patologia
14.
J Fungi (Basel) ; 7(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34947082

RESUMO

Dictyophora indusiata or Phallus indusiatus is widely used as not only traditional medicine, functional foods, but also, skin care agents. Biological activities of the fruiting body from D. indusiata were widely reported, while the studies on the application of immature bamboo mushroom extracts were limited especially in the wound healing effect. Wound healing process composed of 4 stages including hemostasis, inflammation, proliferation, and remodelling. This study divided the egg stage of bamboo mushroom into 3 parts: peel and green mixture (PGW), core (CW), and whole mushroom (WW). Then, aqueous extracts were investigated for their nucleotide sequencing, biological compound contents, and wound healing effect. The anti-inflammatory determination via the levels of cytokine releasing from macrophages, and the collagen stimulation activity on fibroblasts by matrix metalloproteinase-2 (MMP-2) inhibitory activity were determined to serve for the wound healing process promotion in the stage 2-4 (wound inflammation, proliferation, and remodelling of the skin). All D. indusiata extracts showed good antioxidant potential, significantly anti-inflammatory activity in the decreasing of the nitric oxide (NO), interleukin-1 (IL-1), interleukin-1 (IL-6), and tumour necrosis factor-α (TNF-α) secretion from macrophage cells (p < 0.05), and the effective collagen stimulation via MMP-2 inhibition. In particular, CW extract containing high content of catechin (68.761 ± 0.010 mg/g extract) which could significantly suppress NO secretion (0.06 ± 0.02 µmol/L) better than the standard anti-inflammatory drug diclofenac (0.12 ± 0.02 µmol/L) and their MMP-2 inhibition (41.33 ± 9.44%) was comparable to L-ascorbic acid (50.65 ± 2.53%). These findings support that CW of D. indusiata could be an essential natural active ingredient for skin wound healing pharmaceutical products.

15.
EXCLI J ; 20: 1346-1362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602929

RESUMO

Amyloidogenesis is a fundamental step of amyloid beta (Aß) generation-induced toxicity that is commonly reported to disrupt neuronal circuits, function and survival in Alzheimer's disease (AD). The neuroprotective effect of 5,6,7,4'-tetramethoxyflavanone (TMF) from Chormolaela odorata extract on brain degeneration and amyloidogenesis has previously been demonstrated. However, the mechanistic evidence for TMF's effects is still unclear. In this study, we evaluated the neuroprotective effect of TMF in Aß25-35-induced toxicity in SK-N-SH neuroblastoma cells. Herein, we demonstrated that TMF exhibited potent antioxidant activity and significantly increased cell viability and decreased ROS production in a dose-dependent manner. Moreover, TMF reversed the effect of Aß25-35, which caused energy deprivation and apoptosis, by decreasing the ratio of Bax/Bcl-xL and reducing mitochondrial membrane potential (Δψm), caspase-3 expression, apoptotic cells, and attenuating glucose transporter (Glut-3) expression. In addition, TMF protected against Aß25-35-induced cellular senescence by attenuating ß-galactosidase, p-21 and p-53 expression and promoted the expression of Sirt-1 and p-Rb. In addition, the effects of TMF on Aß25-35 toxicity were related to the upregulation of phase II antioxidant and nuclear factor erythroid 2-related factor-2 (Nrf2) signaling, including superoxide dismutase (SOD), heme oxygenase (HO)-1, and nuclear translocation of Nrf2. Finally, we also found that TMF attenuated Aß25-35-reduced synaptic plasticity by increasing the expression of synaptophysin and PSD-95, which was correlated with a decrease in acetylcholine esterase (AChE). Importantly, we found that the protective effects of TMF on Aß25-35 were bidirectional, including marked inhibition of NADPH oxidase (NOX)-4 activity and partial activation of Sirt-1, which occurred prior to a reduction in the negative responses. Therefore, TMF may be useful for treating Aß toxicity in AD.

16.
Bioorg Chem ; 110: 104799, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33730671

RESUMO

The isopimarane diterpene, 1α,11α-dihydroxyisopimara-8(14),15-diene (1), is the major constituents from the rhizomes of Kaempferia marginata (Zingiberaceae), a Thai medicinal plant. The microbial transformation of parent compound 1 by the fungus Cunninghamella echinulata NRRL 1386 gave five new metabolites, 7α,11α-dihydroxy-1-oxoisopimara-8(14),15-diene (2), 3ß,7α,11α-trihydroxy-1-oxoisopimara-8(14),15-diene (3), 7ß,11α-dihydroxy-1-oxoisopimara-8(14),15-diene (4), 7α-hydroxy-1,11-dioxoisopimara-8(14),15-diene (5) and 1α,7ß,11α-trihydroxyisopimara-8(14),15-diene (6), together with three known metabolites, 7-9. The structures of the new metabolites were elucidated by spectroscopic techniques. The known compounds were identified by comparison of the spectroscopic and physical data with those of reported values. The parent compound 1 and the metabolites have been neuroprotective activities evaluated against Aß25-35-induced damage in human neuroblastoma cells (SK-N-SH). Among them, compounds 1-3, 5 and 7-9 had significant neuroprotective activities at a concentration of 2.5 µM. The results demonstrated that these compounds might be worth for further development into therapeutic agents for the treatment of neurodegenerative diseases.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Biotransformação , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Zingiberaceae/química , Peptídeos beta-Amiloides/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Fragmentos de Peptídeos/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
17.
J Pharmacol Sci ; 143(1): 9-16, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32107104

RESUMO

This study investigated the long-term effects of dihydrocapsaicin (DHC)-induced angiogenesis and improved functional outcomes in cerebral ischemia and reperfusion (I/R) rats. Middle cerebral artery occlusion was induced in I/R rats for 2 h, followed by reperfusion. The animals were divided into three groups: sham, I/R + vehicle, and I/R + DHC (10 mg/kg body weight). Fourteen days after I/R injury, the DHC-treated I/R rats had decreased neurological deficit scores, infarct volume, and brain morphology changes. DHC-induced angiogenesis significantly increased the expression of angiogenic factor proteins, such as hypoxia inducible factor 1α (HIF-1α), vascular endothelial growth factor (VEGF), and matrix metalloprotease 9 (MMP-9), at 3 d and 14 d following I/R and also increased the expression of angiogenic inhibitors, such as angiopoietin 1 (Ang-1) and its receptor tyrosine kinase (Tie-2), at 14 d following reperfusion. DHC-mediated angiogenesis was confirmed by a significant increase in positive BrdU labeling that co-localized with the von Willebrand factor (an endothelial cell marker) at 14 d after I/R. Furthermore, rotarod and pole tests demonstrated that DHC promoted functional recovery when compared with the vehicle group. Thus, the results reveal that DHC mediates angiogenesis and functional recovery after an ischemic stroke.


Assuntos
Indutores da Angiogênese , Isquemia Encefálica/tratamento farmacológico , Capsaicina/análogos & derivados , Neovascularização Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/patologia , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Neovascularização Fisiológica/genética , Ratos Wistar , Traumatismo por Reperfusão/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Neurotox Res ; 37(3): 640-660, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31900895

RESUMO

The specialized brain endothelial cells interconnected by unique junctions and adhesion molecules are distinctive features of the blood-brain barrier (BBB), maintaining the homeostasis of the cerebral microenvironment. This study was designed to investigate the protective effects of melatonin on methamphetamine (METH)-induced alterations of BBB integrity. Wistar rats were randomly distributed into groups and underwent melatonin pretreatment and escalating-high doses of METH treatment. Immunohistochemistry was performed to demonstrate the BBB leakage. Protein and RNA samples were isolated from hippocampal and prefrontal cortical tissues and measured expression levels of molecular markers associated with BBB structural components and inflammatory processes. METH provoked the loss of zonula occludens (ZO)-1, occludin, and claudin-5 tight junction proteins. Furthermore, METH caused an excessive increase in matrix metalloproteinase-9 (MMP-9) enzyme, intercellular adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) and the increase in NAD(P)H oxidase 2 (NOX2). Melatonin exerted the protective effects by recovering tight junction loss; attenuating excessive MMP-9, NOX2, and cell adhesion molecule expression; and reducing serum albumin in the brain. Our results also showed the protective effects of melatonin against METH neurotoxic profiles, characterized by reactive gliosis: microglia (integrin-αM) and astrocyte (GFAP); an excessive upregulation of primary pro-inflammatory cytokines: interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α); activation of neuroinflammatory signaling: nuclear factor-kappa B (NF-κB); and suppression of anti-oxidative signaling: nuclear factor erythroid 2-related factor (Nrf2), that may exacerbate BBB structural impairment. Our results provide insights into the beneficial effects of melatonin against METH-induced BBB disruption and mechanisms that play detrimental roles in BBB impairment by in vivo design.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Melatonina/administração & dosagem , Metanfetamina/toxicidade , Fármacos Neuroprotetores/administração & dosagem , Animais , Barreira Hematoencefálica/metabolismo , Adesão Celular/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos Wistar , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
19.
Acta Pharmacol Sin ; 39(9): 1439-1452, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29671417

RESUMO

Cyanidin is polyphenolic pigment found in plants. We have previously demonstrated that cyanidin protects nerve cells against Aß25-35-induced toxicity by decreasing oxidative stress and attenuating apoptosis mediated by both the mitochondrial apoptotic pathway and the ER stress pathway. To further elucidate the molecular mechanisms underlying the neuroprotective effects of cyanidin, we investigated the effects of cyanidin on neuroinflammation mediated by the TLR4/NOX4 pathway in Aß25-35-treated human neuroblastoma cell line (SK-N-SH). SK-N-SH cells were exposed to Aß25-35 (10 µmol/L) for 24 h. Pretreatment with cyanidin (20 µmol/L) or NAC (20 µmol/L) strongly inhibited the NF-κB signaling pathway in the cells evidenced by suppressing the degradation of IκBα, translocation of the p65 subunit of NF-κB from the cytoplasm to the nucleus, and thereby reducing the expression of iNOS protein and the production of NO. Furthermore, pretreatment with cyanidin greatly promoted the translocation of the Nrf2 protein from the cytoplasm to the nucleus; upregulating cytoprotective enzymes, including HO-1, NQO-1 and GCLC; and increased the activity of SOD enzymes. Pretreatment with cyanidin also decreased the expression of TLR4, directly improved intracellular ROS levels and regulated the activity of inflammation-related downstream pathways including NO production and SOD activity through TLR4/NOX4 signaling. These results demonstrate that TLR4 is a primary receptor in SK-N-SH cells, by which Aß25-35 triggers neuroinflammation, and cyanidin attenuates Aß-induced inflammation and ROS production mediated by the TLR4/NOX4 pathway, suggesting that inhibition of TLR4 by cyanidin could be beneficial in preventing neuronal cell death in the process of Alzheimer's disease.


Assuntos
Antocianinas/farmacologia , Inflamação/metabolismo , NF-kappa B/metabolismo , Neuroblastoma/metabolismo , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos , Acetilcisteína/farmacologia , Peptídeos beta-Amiloides , Anti-Inflamatórios não Esteroides/farmacologia , Linhagem Celular Tumoral , Humanos , Inflamação/induzido quimicamente , NADPH Oxidase 4/antagonistas & inibidores , NADPH Oxidase 4/metabolismo , Fragmentos de Peptídeos , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo
20.
Biomed Pharmacother ; 103: 582-587, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29677545

RESUMO

Beta-amyloid (Aß) peptide, the hallmark of Alzheimer's disease (AD), invokes a cascade of oxidative damage to neurons and eventually leads to neuronal death. This study evaluated the protective effects of lutein extract from yellow cocoons of Bombyx mori, and its underlying mechanisms against was investigated to assess its protective effects and the underlying mechanisms against Aß25-35-induced neuronal cell death in cultured rat pheochromocytoma (PC12) cells. Aß25-35-induced neuronal toxicity is characterized by decrease in cell viability, increase in intracellular reactive oxygen species (ROS) production, activation of mitochondrial death pathway, and activation the phospholyration of mitogen-activated protein kinase (MAPKs) pathway. Pretreatment with silk lutein extract significantly attenuated Aß25-35-induced loss of cell viability, apoptosis, MAPKs pathway activation and ROS production. Taken together, our present study suggests that silk lutein extract protects PC12 cells from Aß25-35-induced neurotoxicity via the reduction of the ROS production, and subsequent attenuation of the mitochondrial death pathway and reduces the activation of the MAPK kinase pathways. This compound might beneficial as potential therapeutic agent to prevent or retard the development and progression of AD.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Apoptose/efeitos dos fármacos , Bombyx , Citoproteção/efeitos dos fármacos , Luteína/farmacologia , Fragmentos de Peptídeos/toxicidade , Seda/farmacologia , Animais , Apoptose/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Citoproteção/fisiologia , Relação Dose-Resposta a Droga , Luteína/isolamento & purificação , Células PC12 , Ratos , Seda/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA